교육용 로봇 프로그래밍 위한
스몰베이직 라이브러리 설계 및 구현에 관한 연구

박세영, 조문영, 최광훈
전남대학교 전자컴퓨터공학부

e-mail : hamrrypoter@naver.com
domy9649@gmail.com
kwanghoon.choi@jnu.ac.kr

A Study on the Design and Implementation of SmallBasic Library for Educational Robot Programming

Se-Yeong Park, Moon-Young Jo, Kwang-Hoon ChoI
Dept. of Electronics and Computer Engineering, Chonnam University

요 약

텍스트 기반 언어 스품바이직은 적은 수의 언어 특성을 가지고 있어 배우기 쉽고 이해하기 빨라 전통적인 교육용 언어로 적합하다. 로봇 프로그래밍을 위한 다양한 라이브러리가 필요한데, 마이크로소프트에서 개발한 스품바이직 환경에서는 로봇 프로그래밍을 위한 라이브러리를 지원하지 않는다. 이 논문에서는 오픈소스 소프트웨어 스품바이직 환경에 동작하는 헤크스트 로봇 라이브러리를 설계 및 구현하였다. 교육용 언어 스품바이직과 파이썬에서 사용하는 로봇 프로그래밍 라이브러리를 지원하면 사용자가 쉽게 로봇 프로그래밍을 할 수 있는 헤크스트 라이브러리를 활용하여 대표 프로그램을 작성함으로써 쉽게 스품바이직 기반 로봇 프로그래밍을 할 수 있음을 확인하였다.

1. 서론

코딩교육의 중요성이 커지고 있다. 모든 사회에 컴퓨터 기술이 투자되는 시대에는 소프트웨어의 역할들이 매우 커져서 이에 대한 이해가 매우 중요하다. 시대 변화에 따라 세계적으로도 코딩교육을 우대하고 있는 추세다. 우리나라 역시 2018년부터 초등학교에서 소프트웨어 교육을 의무화할 것을 발표한 상황이다.

마이크로소프트 사의 스품바이직은 프로그래밍 언어 문법을 원어로 기반으로 프로그래밍 언어다 [1]. 프로그래밍을 위한 최소한의 요소만을 도입하여 만들어진 다양한 라이브러리를 활용하여 텍스트, 그래픽스 프로그램을 쉽게 작성할 수 있게 만들어졌다. 이러한 특징 때문에 프로그래밍 언어에 대한 시각적 이해가 없는 입문자 혹은 비전문가들이 쉽게 문제를 해결할 수 있다.

단지 텍스트를 출력하고 숫자를 계산하는 프로그램을 작성하는 코딩교육은 일반적인 환경보다 훨씬 못하다. 스품바이직으로 그래픽스 프로그램을 쉽게 작성할 수 있는 경우로서 하단에서 헤크스트 스품바이직으로 작성한 서로 다른 사람이 작성하는 프로그램을 작성하는 것이 다. 예를 들면 로봇을 움직이게 하고 이 로봇에 부착된 센서를 동작시키는 등 서로 상호작용을 할 수 있도록 프로그램을 작성하는 것이다. 예를 들어, 광범위한 헤크스트 로봇 [3]을 제어하는 프로그램을 작성한다면 매우 효과적인 코딩 교육이 이루어질 것이다.

배울 수 있고, 이후에 C/C++/Java 언어로 전환하기 어려워 교육용 언어로 선택하게 되면 하도. 파이썬은 객체와 클래스 개념을 요구하기 때문에 입문자에게 불필요한 장벽이 있다. 반면에 스몰베이직은 C/C++/Java와 같은 다양한 고급언어들이 가지고 있는 많은 특성을 벌리고 중요한 개념만을 도입하여 코드를 작성할 수 있기 때문에 청소년들에게 가장 적합하다고 판단된다.

하지만 현재 마이크로소프트 사의 스몰베이직 환경에서는 이 논문에서 관심을 갖는 헬스터 로봇을 제어하는 라이브러리를 제공하지 않는다. 따라서 코딩 교육에 흥미를 높이기 위한 피지컬 컴퓨팅 프로그래밍을 적용하는데 제한적이다.

본 연구에서는 저자들이 개발하고 있는 오픈소스 스몰베이직 환경[6]에서 헬스터로봇용 라이브러리를 설계 및 개발하여 피지컬 컴퓨팅 기반 코딩 교육의 한가지 방법을 제시하려 한다. 이모를 탐색하는 프로그램, 길 따라가는 프로그램, 사람과의 상호작용을 하는 프로그램 등 여러 로봇 제어프로그램들을 입문자가 어려움 없이 작성할 수 있는 환경을 제공하는 데 목적이 있다.

2. 관련연구

헬스터로봇은 다른 교육용 프로그래밍 언어인 스크래치와 파이썬으로 작성한 프로그램을 통해 제어할 수 있다. 아래(그림1)는 스크래치 프로그램으로 헬스터로봇 장애물을 만나면 오른쪽으로 회전하게 하여 미로를 탈출하게 하도록 작성한 예제이다.

(그림 1) 스크래치 기반 헬스터 로봇 제어 프로그램 예제

스מס 생산 라이브러리는 블록 기반 프로그램을 이용하여 로봇을 제어한다. 헬스터가 지원하는 고급언어의 메소드들과 스크래치의 블록의 기능에 차이가 없기 때문에 로봇을 다루는데 크게 어려움은 없다. 하지만 스크래치의 언어적 특징상 세심한 코딩이 함들다는 단점을 가지고 있다.

```java
hamster=Hamster()
while True:
    hamster.wheel(40)
    if hamster.left_proximity() > 35 or hamster.right_proximity() > 35:
        hamster.wheel(30,-30)
    while hamster.left_proximity() > 35 or hamster.right_proximity() > 35:
        ...
```

(그림 2) 파이썬 기반 헬스터 로봇 제어 프로그램 예제

파이썬 프로그램으로 로봇을 제어하는 프로그램을 작성하는 방법은 스크래치와 비교하여 크게 다르지 않다. 직 1은 장애물을 만나면 오른쪽으로 회전하게 하는 동일한 기능의 예제이다. 파이썬은 객체 지향 언어로 첫번째 줄에서 hamster 객체를 만들고 이 객체를 참조하여 함수를 호출하는 방식을 취해 위 스크래치 프로그램(그림 1)과 큰 차이를 보이고 있다.

3. 헬스터 로봇 제어를 위한 스몰베이직 라이브러리 설계 및 구현

(그림 3) 헬스터 로봇 구성도

(그림3)은 헬스터 로봇 제어를 위한 스몰베이직 라이브러리의 구성을 보여준다. 스몰베이직 프로그램은 자체적으로 작성한 스몰베이직 라이브러리 Hamster를 이용해 헬스터 로봇 제어 스몰베이직 프로그램을 작성한다. 이 라이브러리는 [3]에서 제공한 자바로 작성된 라이브러리를 기반으로 작성하였다. 스몰베이직 라이브러리 Hamster는 (표1)과 같은 함수들을 제공한다. 스몰베이직 프로그램과 헬스터 로봇은 BLE(Bluetooth Low Energy) 방식으로 통신하는데, 복잡한 연결 과정은 모두 추상화하여 스몰베이직 프로그래머는 쉽게 헬스터 로봇에 연결하고 제어할 수 있도록 라이브러리를 설계하였다.
(표 1) 헬스터 로봇 합수 목록(합수 개수)

<table>
<thead>
<tr>
<th>합수 기능</th>
<th>단일 모드</th>
<th>멀티 모드</th>
</tr>
</thead>
<tbody>
<tr>
<td>바퀴 속도 조절</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>이동 모드 제어</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>LED 제어</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>소리 제어</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>센서 제어</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>확장 키트 제어</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>헬스터 추가</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>헬스터 로봇 제어</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>합계</td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

(그림 5) 스몰베이직 라이브러리를 사용하여 작성한 프로그램으로 헬스터 로봇 제어

(표 1)과 같이 가능한 스몰베이직 헬스터 라이브러리는 헬스터 로봇 한 대를 제어하는 단일 모드와 여러 대를 함께 제어하는 멀티 모드로 구분하여 라이브러리 합수들을 제공한다. 로봇의 바퀴속도 조절, 이동 모드, LED 제어, 소리 제어, 센서 제어, 확장 키트 제어 등 총 71개의 합수를 설계 및 구현하였다.

(그림 4) 스몰베이직 기반 헬스터 제어

(그림 4)는 앞서 본 스크래치, 파이썬의 예제와 동일하게 헬스터 로봇을 제어하는 프로그램을 앞서 설명한 라이브러리로 사용하여 작성한 스몰베이직 프로그램 예제이다. (그림 5)는 이 스몰베이직 예제를 실행시켜 헬스터 로봇이 동작하는 모습이다.

스мол베이직 언어에서는 객체의 개념이 없기 때문에 헬스터 로봇 객체에 대한 이해가 없어도 프로그래밍을 할 수 있도록 구현했다. 예를 들어 파이썬 프로그램의 경우 헬스터 객체를 만드는 작업인 `hamster = Hamster()`를 반복해서 여러 번 수행하고, 이 객체를 참조하여 메소드를 호출해야 한다. 그 후 바퀴 속도를 제어하기 위해서 `hamster.wheel(40)`과 같이 작성한다. 반면에 스몰베이직에서는 `Hamster.Wheel(40)`으로 객체의 개념없이 작동할 수 있다.

사용자가 로봇을 제어하려는 논리를 직접적으로 표현할 수 있는 고수준의 라이브러리 합수를 설계했다. 예를 들어 위의 스몰베이직 프로그램 예제(그림3)에서 사용한 `rotateWithObstacleInDistance` 함수는 헬스터 로봇이 제공하는 자바 라이브러리에 존재하지 않는 합수이지만 자주 사용되는 기능이기 때문에 여러 자바 라이브러리 합수를 조합하여 설계 및 구현했다.

현재 마이크로소프트 시는 스몰베이직 환경에서 헬스터 로봇 제어 라이브러리를 제공하지 않는다. 이를 개발함으로써 청소년 수준에 적합한 스몰베이직을 이용하여 로봇을 제어할 수 있는 적절한 환경을 제공하고자 했다. 또한 가장 논리적인 코드를 작성할 수 있도록 라이브러리에 새로운 합수를 추가했다. 로봇을 제어하는 데 있어서 불필요한 작업은 스몰베이직 라이브러리 안에서 처리하도록 설계했다.

다블러 멀티모드를 위한 합수들을 준비했다. 헬스터 로봇 추가함수와 제어함수를 제외하면 모든 합수에 자기함수에 대응되는 멀티함수가 있다. 헬스터로봇 추가함수를 호출하면 헬스터 로봇을 연결된 뒤 연결

- 401 -
5. 결론 및 향후 연구
본 연구에서는 스물예치 언어로 헬스터 로봇을 쉽게 제어할 수 있는 프로그램을 작성할 수 있도록 71개의 함수로 구성된 단일/다중 로봇 제어 라이브러리를 설계하고 구현하였다. 이 라이브러리를 활용하여 헬스터 로봇을 제어하는 스물예치 프로그램을 다수 작성함으로써 스물예치 언어 기반 피저컬 컴퓨팅 환경을 제공하였다. 코딩 교육에 대한 많은 학생들의 흥미를 유발하는데 큰 기여를 할 수 있을 것으로 판단한다.

현재 마이크로소프트 스물예치 환경[1]에서는 헬스터 로봇을 사용할 수 없다는 점을 고려가 개발하고 있는 오픈소스 소프트웨어 스물예치 환경에서 이 라이브러리를 제공함으로써 개선할 수 있다. 향후 헬스터 라이브러리를 초보자가 이용할 수 있도록 간단하게 설계하여 사용할 수 있도록 라이브러리 연구할 것이다.

6. 참고문헌